

The History of Everything

credit: NASA/WMAP Science Team ESA & Planck Collaboration

CMB Polarization

E-modes

Baumann 2009

credit: ESA and the Planck Collaboration

The Universe as a Laboratory

r: tensor to scalar ratio

effective number of neutrino species

NASA/WM

CMB Power Spectra

The SPT-3G Collaboration

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope

95, 150, 220 GHz and 1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ 960 detectors 95,150,220 GHz

2012: SPTpol

1600 detectors 95,150 GHz +Polarization

2017: SPT-3G

~16,000 detectors 95,150,220 GHz +Polarization

SPTpol EE Power Spectra

Henning 2017: arXiv1707.09353v1

Scaling Up for SPT-3G

 SPTpol

- SPT uses transition-edge sensor bolometers
 - Noise is dominated by the incoming photon noise
 - More sensitivity requires more detectors
- Technological Challenges
 - Detector fabrication
 - Detector readout
 - Cryogenics
 - Large optical elements

SPT-3G

 $-\mathbf{m}$

TES Detectors

- Broad-band sinuous antenna coupled via microstrip and in-line filters to TES bolometers
 - 6 separate TES islands per pixel (3 bands & 2 polarizations)
 - 271 pixels fabricated monolithically on a 6" wafer
- Fabricated at Argonne National Laboratory
- 10 wafer x 271 pixels x 6 TES
 ~ 16,000 detectors

Multiplexing Readout

LC Filters

AC Bias

64 TESs read out on single pair of wires.

Demodulation & Feedback

TES Bolometers

SQUID Amplifier

Integration

SPT-3G First Light January 30, 2017

Current Receiver Status

Instrumental Sensitivity ~ N_{bolometers}

Detector Yield ~ 74%

Main Losses:

- Detector defects (~11%)
- Readout defects (~12%)
- Experimental Readout (~3%)

December 2017 receiver work planned to recover these losses.

Noise

- Noise is enhanced compared to expectation
 - Due to subtle effect in SQUID amplifiers
 - Replacement amplifiers will enable nominal performance

High saturation power (Psat)

- → Large operating voltage bias
- → Extra noise power from readout

Detectors with optimized P_{sat} to be installed.

Optical Performance

- Bands similar across all detector wafers
- Efficiency consistent with good detector efficiency (60-90% including lenslet)
- New AR coating of lenses will improve transmission in future

Source Observations

SPT-3G Forecasts

2500 square degree survey for 4 years

	95 GHz	150 GHz	220 GHz
Τ (μK-arcmin)	3.6	3.3	8.5
P (μK-arcmin)	5.1	4.7	12

- Overlap with BICEP/Keck
- High S/N measurement of gravitational lensing B-modes
 - constrain sum of neutrino mass
 - de-lensing of B-mode power spectrum

Lensing Forecast

Benson 2014

SPT-3G Projected Power Spectra

Benson 2014

2021 Projections

Priors from Planck + BOSS

Summary

- SPT-3G installed on the telescope in early 2017
- Engineering and early science observations underway!
 - Optimizations in detectors, readout, and optics planned for installation in late 2017
- 4-year survey will map the polarization of the CMB with high-resolution
- Resulting data will be used to probe the neutrino sector and inflation

